Modelling of Gear Meshing: A Numerical Approach for Dynamic Behavior Estimation of Thin Gears

Francesca Cura, Carlo Rosso, Topics in Nonlinear Dynamics, April 2013, Volume 35, Conference Proceedings of the Society for Experimental Mechanics Series, pp. 319-333.

Abstract

The paper deals with the numerical analysis of thin gears. In particular, a brief overview of literature modeling techniques is reported in order to understand the best way for analyzing the dynamic behavior of gears. Then a multibody commercial software is used for implementing different complexity levels of models. The study starts with a simplified model that considers rigid the gears and concentrates the stiffness in the contact between teeth. The second, and more complex, model considers the stiffness in the contact and adds the compliance of the teeth. Stiffness of tooth is depicted as a rotational stiffness placed at the tooth root. Then, the third model increases the complexity, in fact the second model is complicated introducing the compliance of the gear body. In order to do that, a modal analysis of the gears is conducted and the synthetized modal shapes of the gears are introduced in the multibody model. The comparison highlights how the dynamic behavior of thin gears is really important in the meshing force estimation, in fact the transmission error becomes more irregular and the contact forces increase. As a second aspect, this analysis emphasizes the influence of the contact damping and the contact friction in the backlash phenomenon.

How Multibody Dynamics Simulation Technology is Used

The transmission dynamics of very thin gears is studied using a fully rigid model, RFlex and FFlex. It is concluded that the compliance of the gear bodies could deeply affect the transmission behavior. These dynamics could easily be missed if the gears were assumed to be rigid bodies.

Get This Paper

Related Case Studies

Multibody Dynamics Software Used:

Learn More about MotionPort: