

EHD (Piston Lubrication)

Index

I. Background

II. Piston Lubrication Modeling Process

III. RecurDyn/EHD Tutorial [Piston Lubrication]

Background

EHD Toolkit

RECURDYN

- ✤ The EHD (Elasto-Hydro Dynamic) Toolkit is released in V9R1.
- ✤ The EHD bearing entity
- ✤ The new piston lubrication entity

*

Interactions between MFBD and EHD

What is EHD?

- The goal of hydrodynamic lubrication is to add a proper lubricant, so that it penetrates into the contact zone between rubbing solids and creates a thin liquid film. This film separates the surfaces from direct contact. In general, this reduces friction and can consequently reduce wear, since friction within the lubricant is less than between the directly contacting solids.
- History of lubrication theory goes back to 1886 when O. Reynolds published famous equation of the fluid film flow in the narrow gap between two solids. This equation carries his name and forms a foundation of the lubrication theory.

< Journal Bearing >

Fluid Lubrication Region: Governing Equation

Lubrication Region and Contact Region

Contact Region: Governing Equations

- Asperity Contact
 - In the case of a mixed lubrication region, the asperity contact force is added in the fluid pressure. The equation for the asperity contact force is as follows:

- Pre-stage of Piston Lubrication Creation Process
 - Steps to create the RFlex bodies of Piston & Cylinder \checkmark
 - RFlex bodies: user prepares the RFlex Bodies which includes the mode shapes with respect to local deformation (1)
 - PatchSet: user creates the PatchSet to that RFlex Bodies to define the EHD zone (2)

- ✤ Create the Piston Lubrication Entity
 - ① Piston Lubrication Icon in the EHD Toolkit

- 2 Create the Piston Lubrication EHD
 - a. Click the "Piston Lubrication" Icon
 - b. Select the **Creation option**
 - c. Select the **Cylinder** body[Base Body]
 - d. Pick the Point as Base Marker of Cylinder body
 - e. Select the **Piston** body[Action Body]
 - f. Pick the **Point as Action Marker** of Piston body

You can define the EHD more easily using the option below, "Body,Point,Direction,Direction,Body,Point,Direction,Direction"

- -1st Body: Cylinder
- Point: Base Marker Position
- Direction: Y-Axis Direction of Base Marker
- Direction: X-Axis Direction of Base Marker
- 2nd Body: Piston
- Point: Action Marker Position
- Direction: Y-Axis Direction of Base Marker
- Direction: X-Axis Direction of Base Marker

- a. Piston Diameter
- b. Piston Height
- c. Cylinder Diameter
- d. Cylinder Height

[RFlex]

- e. Piston.PatchSet
- f. Cylinder.PatchSet

[Adjust Node Position Option]

In the case of RFlex Body, the node position could be located at an arbitrary point according to its mesh quality. So, it must to be updated to the nominal radius for an accurate EHD solution.

RECURDYN

13 🔪

- Define the Piston Lubrication properties
 - ✓ EHD Material Properties
 - [Oil Properties]
 - a. Dynamic Viscosity
 - : In this example, it is defined
 - as the constant viscosity
 - value for oil dynamic viscosity.

a. Pressure-Viscosity Coefficient

$$\mu = \mu_o e^{\alpha p}$$

where, $\boldsymbol{\alpha}$ is the pressure-viscosity coefficient.

Properties of Lubrication2_sample [Cur General Connector Lubrication	rent Unit : N/kg/mm/s/deg]	
Piston Diameter	70. Pv	
Piston Height	29. Pv	
Cylinder Diameter	70.045 Pv	
Cylinder Height	95. Pv	
Dynamic Viscosity[Pa.s]	6.e-03 Pv	
Mesh Grid Setting	Adjust Node Position	
Additional Options	Solver Setting	
Piston Patch Set (RFlex) Profile	Additional Options	×
Cylinder —	Pressure-Viscosity Coefficient[1/Pa]	0. Pv
Patch Set (RFlex)	Asperity Contact Information	
Profile	Direct Input 🔻	Each Parameter
Show Pressure Contour	Roughness[L]	1.4142135623731e-03 Pv
	Composite Elastic Modulus[F/L^2]	73260.0732600733 Pv
Force Display Inactivate	Elastic Factor	3.56435612148461e-04 Pv
Scope OK	Friction Coefficient	0. Pv Friction
	С	ose

- Define the Piston Lubrication properties
 - ✓ EHD Material Properties
 - [Asperity Contact Properties]
 - > Direct Input / Each Parameters & Calc.
 - a. Roughness
 - b. Composite Elastic Modulus
 - c. Elastic Factor
 - d. Friction Coefficient

Cylinder (Base)		
Elastic Modulus [F/L^2]	200000.	Pv
Poisson Ratio	0.3	Pv
Roughness [L]	1.e-03	Pv
Number of Asperities per Unit Area [1/L^2]	1000.	Pv
Mean Radius of Curvature of the Asperities [L]	1.e-02	Pv
Piston (Action)		
Piston (Action) Elastic Modulus [F/L^2]	100000.	Pv
Piston (Action) Elastic Modulus [F/L^2] Poisson Ratio	100000.	Pv Pv
Piston (Action) Elastic Modulus (F/L^2) Poisson Ratio Roughness [L]	100000. 0.3 1.e-03	Pv Pv Pv
Piston (Action) Elastic Modulus (F/L^2) Poisson Ratio Roughness [L] Number of Asperities per Unit Area (L/L^2)	100000. 0.3 1.e-03 1000.	Pr Pr Pr Pr

Define the Piston Lubrication properties

✓ Film Thickness

: it can define the user defined film thickness as a boundary condition

- a. Height Length
- b. Reference Marker
- c. Number of Height
- d. Thickness
 - a. Height
 - b. Thickens
- e. Up/Down Stroke Signal

: User defined oil film thickness can be defined as up & down stroke separately. So, it is necessary to judge the up/down state condition. It is judged by the pre-defined user expression in this field.

- Negative value(-) \rightarrow Down-Stroke User Oil Film
- Positive value(+) → Up-Stroke User Oil Film

TIAC					
lies		User Define	d Film Thickness		
operties of Lubrication1 (Current	t Unit : N/ka/mm/s/dea 1	🗹 Use Defin	ed Film Thickness		
eneral Connector Lubrication		UpStroke	DownStroke		
connector connector					
Piston Diameter	70. Pv	Height Le	ength	95	Pv
Piston Height	29. Pv	Referenc	e Marker	Cylinder.Marker3	М
Cylinder Diameter	70.045 Pv	Number	of Height	10	
Cylinder Height	95. Pv		Create Da	ta Field Uniformly	
Dynamic Viscosity[Pa.s]	2.28e-03 Pv			,	
[Thicknes	5		
Mesh Grid Setting	Adjust Node Position	No	Height	Thickness	1
Additional Options	Solver Setting	1	-47.5	0.0225	
Piston		2	-36.9444444	0.0225	
Patch Set (RFlex)	Piston.SetPatch1 P	3	-26.38888889	0.0225	
Desfile		4	-15.83333333	0.0225	
Profile	Output Point for Clearance	5	-5.27777778	0.0225	
- Cylinder		6	5.27777778	0.0225	
Patch Set (RFlex)	Cylinder.SetPatch1 P	7	15.83333333	0.0225	
Profile	Film Thickness	8	26.38888889	0.0225	
		9	36.9444444	0.0225	
Show Pressure Contour	Contour Setting	10	47.5	0.0225	Import
	Output Data Export				
					Export
Force Display Inactivate					
Scope	OK Cancel Apple				
stope	Cancer Appig	Up/Down Str	oke Signal		EI
				Close	

16

*

 \checkmark

17 🔪

Define the Piston Lubrication Outputs

✓ Contour Setting

- a. Contour Type
 - a. 3D Surface
 - b. Projection
- b. Pressure Type
 - a. Hydrodynamic
 - b. Asperity
 - c. Hydrodynamic + Asperity
- c. Min/Max Option
 - a. Cut Off Pressure
- d. Color Option

EHD Toolkit

- EHD Plot Results
 - ✓ EHD Force Results

Hydrodynamic Force: The force magnitude and components resulting from hydrodynamic pressure with respect to EHD reference marker.(FM_Hydro, FX_Hydro, FY_Hydro, FZ_Hydro)

Asperity Force: The force magnitude and components resulting from asperity contact pressure with respect to EHD reference marker.(**FM_Asperity, FX_Asperity, FY_Asperity, FZ_Asperity**)

RecurDyn/EHD Tutorial

[Piston Lubrication]

© 2017 FunctionBay, Inc.

<u>Step 01</u> – Import RFlex Bodies

① Open the

"PistonLubricationEHD_

Tutorial_Start.rdyn" model in RecurDyn V9R1

- Select G-Manager icon in G-Manager group of Flexible tab
- $\ensuremath{\mathfrak{S}}$ Select the $\ensuremath{\text{Cylinder}}$ rigid body.
- In G-Manger dialog, change the "Target converting body" to "RFlex"
- Specify the RFI file in the "RFI File Path" input field using the already provided "Cylinder.rfi" and click Execute.
- Swap the Piston body as same as above STEP 2~5, using the provided "Piston.rfi" file.
- ⑦ Save the model as "PistonLubricationEHD_Tutorial_R flex.rdyn"

% You can simulate and review the result of EHD applied to the rigid bodies.*PistonLubricationEHD_Tutorial_Rigid.rdyn*

<u>Step 02</u> – Make a PatchSet

<u>Steps</u>

- Enter the edit mode of the Cylinder Body to create the PatchSet.
- ② Create PatchSet as an EHD
 Cylinder Wall as shown figure.
 (Use Add/Remove (Continuous))
- ③ Exit the edit-mode, and enter the Piston body.
- ④ Create 2 PatchSets as for Piston.
 (SetPatch1 using both side surfaces to apply EHD and SetPatch2 using the upper surface to apply Gas-force Pressure) as shown in the figure.
- **(5) Exit** the **edit-mode**.

RECURDYN

24

Step 03 – Create the Modal Pressure to the Piston

<u>Step 04</u> – Create Piston Lubrication EHD Entity

<u>Steps</u>

- Select **PistonLub** icon in the Toolkit group of the Toolkit tab.
- 2 Set the Creation option to
 "Body,Point,Direction,Direction,
 Body,Point,Direction,Direction"
 (You can define the EHD axis more clearly)
- ③ Choose the Cylinder RFlex Body as Base-body of EHD
- Pick the Center Point of Base
 Body (Cylinder). In this tutorial, it is "0,-46.5,0"
- (5) Set the direction #1 of Base-Body to Global Y Axis (0, 1, 0)
 → Y-axis direction of Base Marker
- ⑥ Set the direction #2 of Base-Body to Global X Axis (1, 0, 0)
 → X-axis direction of Base Marker
- ⑦ Define the Action Body as same as above steps 3 ~ 6
 - Action Body: Piston
 - Center Point: 0,-29.5,0
 - Direction #3: Global Y Axis
 - Direction #4: Global X Axis
- (8) Lubrication1 is created.

<u>Step 05</u> – Define the EHD Geometry Properties

<u>Steps</u> [EHD Geometry Setting]

- Open the Properties Dialog of Lubrication1 (PistonLub EHD)
- ② Input the EHD Geometry

Properties as below:

- Piston Diameter: 70
- Piston Height: 29
- Cylinder Diameter: 70.045
- Cylinder Height: 95
- ③ Input "Piston.SetPatch1" in the Piston PatchSet field.
- ④ Input "Cylinder.SetPatch1" in the Cylinder PatchSet field.

[Mesh Grid Setting]

- S Click the "Mesh Grid Setting" button.
- 6 In the Mesh Grid Setting dialog,
 - Circumference Node No.: 42
 - Axial Node No.: 21
- ⑦ Open the "Oil Hole_Groove Effect Setting" dialog, and check on the "View Nodes", then you can see the Mesh Grid Display.
- (8) Close the dialog.

Pri Contra Contr	operties of Lubrication1 [Current Un	it : N/kg/mm/s/deg]
	Piston Diameter Piston Height Cylinder Diameter Cylinder Height Dynamic Viscosity[Pa.s]	70. Pv 29. Pv 70.045 Pv 95. Pv 6.e-03 Pv
Mesh Grid Setting × Circumference Node No. Axial Node No.	Mesh Grid Setting Additional Options Piston Patch Set (RFlex) Cylinder Cylinder	Adjust Node Position Solver Setting Piston.SetPatch1 Output Point for Clearance
Oil Hole _Groove Effects Setting	Profile	Film Thickness
<i>Tips: How to decide the No. of Mesh Grid</i> To improve the efficiency of the simulation of RecurDyn/EHD Model, make the length of the mesh grid similar to the maximum gap between piston and cylinder. In the Tutorial, In this tutorial, the maximum gap is about 5 mm. The circumference length is " π x 70.045 = 220.05" and height is "95" Therefore, the recommended values are: - Circumference Node No. is 44 (5x44 = 220) - Axial Node No. is 19 (5x19 = 95)	Oil Hole & Groove Effects Setting	IN INDES INITIALIZATION OF CONTRACTOR OF CON

Step 06 – Define the EHD Material Properties

<u>Steps</u>

- In the property dialog of Lubrication1, Input the Dynamic Viscosity as "6e-3".
- ② Click the "Additional Options" button.
- ③ Use "Direct Input" in Asperity Contact Information.
- ④ Input the values as shown below:

- Roughness: 0.001

- Composite Elastic Modulus: 68000
- Elastic Factor: 0.003
- Friction Coefficient: 0.5

(5) Close the dialog

Properties of Lubrication1 [Current L	Init : N/kg/mm/s/deg]	A
General Connector Lubrication		
Piston Diameter	70. Pv	
Piston Height	29. Pv	
Cylinder Diameter	70.045 Pv	
Cylinder Height	95. Pv	
Dynamic Viscosity[Pa.s]	6.e-03 Pv	*
Mesh Grid Setting	Adjust Node Position	-
Additional Options	Solver Setting	
⊢ Piston —	_	
Patch Set (RFIex)	Piston.SetPatch1 P	
Profile	Output Point for Clearance	
Cylinder		
Additional Options	×	
− Viscosity Information		
Pressure-Viscosity Coefficient[1/Pa]	0. Pv	
Asperity Contact Information		
3 Direct Input ▼	Each Parameter	
Roughness[L]	1.e-03 Pv	5.
Composite Elastic Modulus[F/L/4	68000. Pv	t t
Elastic Factor	3.e-03 Pv	roughness
Friction Coefficient	0.5 Pv Friction	
5	lose	

Friction Coeff. $\mathbf{\mu}$

Asperity Contact Points

Step 07 – Set the EHD Solver Settings

<u>Steps</u>

- In the property dialog of Lubrication1, click the "Solver Setting" button
- ② Set the number of "Maximum Iteration" to "200"
- ③ Set the "Maximum Error" to "1e-2"
- ④ Set the "Under Relaxation Factor" to "0.7"
- (5) Set the "Hydro. Force Jacobian Interval" to "10"
 - (The bigger the value that you use, the faster the solving speed can be. However, increasing this value can reduce the accuracy)
- 6 Close the dialog

	Properties of Lubrication1 [Current L General Connector Lubrication Piston Diameter Piston Height Cylinder Height Dynamic Viscosity[Pa.s]	Jnit : N/kg/mm/s/deg] 70. Pv 29. Pv 70.045 Pv 95. Pv 6.e-03 Pv
	Mesh Grid Setting Additional Options Piston Patch Set (RFlex)	Adjust Node Position Solver Setting Piston.SetPatch1 P
Solver Setting 2 Maximum Iteration Maximum Error Under Relaxation Factor Hydro. Force Jacobian Interval	200. 1.e-02 0.7 10. sse	Output Point for Clearance Cylinder.SetPatch1 P Film Thickness Contour Setting Output Data Export
		K Cancel Apply

<u>Step 08</u> – Run EHD Dynamic Analysis

Steps

- Open the property dialog of Cylinder RFlex Body, and select only 5 mode shapes (seq 7~ seq 11) and close the dialog
 Open the property dialog of Piston RFlex Body, and select only 5 mode shapes (seq 7 ~
 - seq 11) and close the dialog.

% The more mode shapes are selected, the longer the solving speed would be.

- ③ Select Dyn/Kin icon in Simulation Type group of Analysis tab.
- ④ Set the End Time to "3.e-2"
- (5) Set the Step to "1000"
- $\textcircled{\sc 6}$ Click the "Simulate" button

Step 09 – Review the EHD Analysis Results (1)

Steps [EHD Contour Result]

- (1) **Open** property dialog of Lubrication1 & check on the "Show Pressure Contour"
- ② Click the "Contour Setting" button
- ③ Set **Pressure Type** to "Hydrodynamic + Asperity"
- ④ Click the **Apply** Button
- **5** Play the Animation
- 6 You can see the contour plot of the EHD force result in the working plane
- (7) Set the **Cut Off Pressure** to "**0.1**", then click the **Apply** button.
- (8) Play the Animation, you can see the contour plot and the values less than the Cut Off value will not be displayed.

Properties of Lubrication1 [Current L General Connector Lubrication	Jnit : N/kg/mm/s/deg]
Biston Diameter	70
Piston Diameter	70. PV
Piston Height	29. Pv
Cylinder Diameter	70.045 Pv
Cylinder Height	95. Pv
Dynamic viscosity[Pa.s]	b.e-US PV
Mesh Grid Setting	Adjust Node Position
Additional Options	Solver Setting
Piston	Picton SatPatch1
Profile	
Pione	
Patch Set (RFlex)	Cylinder.SetPatch1 P
1 Profile	Film Thickness
Show Pressure Contour	Cantaux Satting
	Output Data Export
Force Display Inactivate	_
Scope O	K Cancel Apply
Contour Contour Type	Projection
Pressure Type	3 Hydrodynamic + Asperity
- Min/Max Option -	kine, development, delevante entreffetere and entreffeter.
Calculate Min	/Max
Minimum Value (F)	(1^2) 0.
Maximum Value (F/L ^ 2) 21 6993027675052	
Scale (E/(^2)	
Cut Off Pressure /F	
Show Contour I	Legend
Color Option	
Color at Minimum	Value Automatic -
Color at Maximum	Value Automatic -
[OK Cancel 4 Apply

Step 10 – Review the EHD Analysis Results (2)

Steps [EHD Plot Results]

- Select the "Result" icon in the Plot group of Analysis Tab.
- ② Select **Upper** icon in Windows group of Home tab to Split the Plot Window
- ③ Load animation to the left-side window. ([Tool]-[Animation]-[LoadAni])
- ④ Click the Right-side Plot window, and draw the curve from Plot
 Databse ("Force/Advanced EHD Force/Lubrication1/FX_Total")

X User can see the Hydro+Asperity Total Lubrication Force between Piston and Cylinder. Also, user can see the contact area in the left-side animation result.

RECURDYN

22 💸

© 2017 FunctionBay, Inc.

Step 11 – Review the EHD Analysis Results (3)

100

Step 12 – Create Output Points for Clearance

Steps

- Return to the Working window of RecurDyn, open the property dialog of Lubrication1 (EHD property)
- ② Click the "Output Point for Clearance" button
- ③ Set the reference marker to "Piston.Marker1" (Action Marker of Lubrication1)
- ④ Add 4 Output Gap points
- (5) Set the **Height / Angle** as below:

1) 14, 0

2) -14, 0

3) 14, 180

4) -14, 180

6 Close the dialog

Step 13 – Modify the Piston Profile

<u>Steps</u>

[Piston Profile Modification]

- ① Click the "**Profile**" button.
- ② Check on "Use Profile" option, in the Piston Profile dialog
- $\ensuremath{\mathfrak{I}}$ Set the values as below:
 - 1) Profile Length: 29

2) Number of Angle: 44

3) Ref. Marker: Piston.Marker1

4) No. of Height: 19

- ④ Click the "Create Data Field Uniformly" button
- (5) The input filed of **Profile** is filled automatically

(You cannot modify the values directly in this dialog)

- **(6) Export** the data as *.csv
- ⑦ Open the *.csv file by Excel, and modify the profile data.
- (8) Import the modified *.csv in
 Piston Profile dialog.
 (In this tutorial, you can use precreated "ProfileData.csv")
- (9) Close the Profile dialog
- (1) You can run simulation again using the new setting.

